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Abstract 

In this paper we develop and apply techniques for 
computation of CSL, DSCL and step-vector data for 
grain boundaries in tetragonal materials for a range 
of axial ratios. This has application to L10 alloys 
including TiA1, which is a candidate for lightweight 
high-temperature structural applications. Our results 
are compared with others and found to be more 
accurate and complete. We provide data for a wider 
range of axial ratios than those considered by pre- 
vious workers. We have also derived equivalent 
quaternions for tetragonal crystals in tetragonal- 
crystal coordinates and listed conditions for selecting 
a unique reduced rotation in tetragonal-crystal coor- 
dinates so that a disorientation description becomes 
available. 

In~oduction 

Coincidence-site lattices (CSLs) are geometrical 
models of grain-boundary structure that are formed 
by relative rotations of two congruent lattices, with a 
lattice site used as the origin. The ratio of the 
unit-cell volume of the CSL to that of the original 
lattice is usually denoted by ~. Grain boundaries 
corresponding to relatively low ~ values have been 
found to exhibit special behaviors, leading Watanabe 
(1984) to introduce the concept of grain-boundary 
design as a means of improving various properties in 
polycrystalline materials. 

In grain-bounday geometry, the displacement- 
shift-complete lattice (DSCL), which is a lattice of 
vectors representing the 'complete' displacements of 
one crystal with respect to the other and leaving the 
boundary structure shifted, is also of importance. If 
the relative orientation between two grains deviates 
by only a few degrees from a coincidence orientation 

0108-7681/93/020266-07506.00 

with a low value of ~, then it has often been 
observed that the deviation from exact coincidence is 
accommodated by arrays of DSC dislocations in the 
boundary. Knowledge of the DSCL is essential, for 
example, for the application of modern theories of 
slip transmission (Clark, Wagoner, Chen, Lee, 
Robertson & Birnbaum, 1992). 

Knowledge of the step vector associated with a 
DSC dislocation is essential in determination of the 
height of the step in the grain boundary that is 
associated with the core of a grain-boundary dislo- 
cation. The step vectors for grain-boundary dislo- 
cations in cubic crystals were determined by King 
(1982) and in h.c.p, materials by Chen & King 
(1987). Quantitative confirmation of the importance 
of step vectors in determination of the behaviors of 
grain boundaries has been given by Fukutomi, 
Kamijo & Horiuchi (1986). 

Bruggeman, Bishop & Hartt (1972) pointed out 
that three-dimensional CSLs can only be obtained in 
h.c.p, crystals when (c/a) 2 is a rational fraction, 
except for rotations about the [0001] axis. Hence it is 
necessary to constrain the real (c/a) 2 value to some 
proximate rational value to obtain a three- 
dimensional CSL, which Chen& King (1988) called 
a constrained CSL (CCSL), in order that a DSC 
lattice becomes available. The CSLs that are associ- 
ated with the [0001] rotation axis are exact CSLs 
(ECSLs). Grain-boundary dislocations whose 
Burgers vectors are appropriate DSC lattice vectors 
will accommodate deviation from a CCSL in con- 
straint as well as misorientation. The idea of con- 
strained coincidence lattices extends to all non-cubic 
lattices. In tetragonal crystals, the CSLs that are 
obtained by rotations about the [001] axis are ECSLs 
and the CSLs that are obtained for axes other than 
[001] are CCSLs. Grimmer (1989) called rotations 
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related with ECSLs 'common rotations' and those 
with CCSLs 'specific rotations'. 

Interest in the grain-boundary structure in many 
materials with tetragonal structure is increasing. For 
example, TiAI, an L10 alloy, which is a candidate for 
lightweight high-temperature structural applications, 
suffers from grain-boundary embrittlement. There- 
fore, an understanding of the grain-boundary struc- 
ture in this material is essential. In previous work 
(Singh, Chandrasekhar & King, 1990), we produced 
data appropriate to the superconducting oxide 
YBa2Cu307-s. In this paper we improve upon the 
techniques and apply them to compute CSL, DSCL 
and step-vector data for tetragonal crystals for a 
range of axial ratios and give tables of coincidences 
for L10 alloys. Our results are compared with others 
and found to be more accurate and complete. 

Coincidence orientations 

A basis e of the tetragonal lattice is given by three 
mutually orthogonal vectors et, e2 and e3 of lengths 
a, a and c (=pa) .  The expressions for general 
rotation matrices for coincidence orientations of 
tetragonal crystals and 2/ were derived by Singh, 
Chandrasekhar & King (1990) in terms of six integer 
parameters Ix, v, m, U, V and W satisfying 

¢2 Ix 
g.c.d.(m, U, V, W)= 1, g.c.d.(Ix, u)= 1, 2 - , 

a p 

(1) 
where g.c.d, is an abbreviation for the greatest 
common divisor and Ix and 1, are the positive 
integers for rational values of c2/a 2. (m, U, V, W) is a 
quaternion description of a coincidence rotation, 
corresponding to a rotation matrix 

/x(m - W 2) + v(U 2 -  V 2) 

1 [ 2 ( v U V +  IxmW) R=- T 
1 . 2 u ( U W -  mV)  

2 ( u U V  - Ixm W) 

#(m 2 -  W 2 ) - v ( U  2 -  V 2) 

2 v ( V W  + mU) 

2Ix(UW+ mlO] 

2 I x ( V W -  mU) l .  
#(m 2 + W 2 ) -  v(U 2 + vz)J (2) 

The expression for X can be given as 

F = I x s = / z ( m  2+ W 2 ) + v ( U  2+ V 2 ) = a X .  (3) 

The problem of finding coincidence orientations then 
becomes that of determining appropriate values of 

m, U, V, W, Ix and v, and finding the corresponding 
value of a. Singh, Chandrasekhar & King (1990) 
have shown that 

v/Ix = -r, g.c.d.(Ix,v) = 1; (4) 

4Ixm 2= F + r~-i + r~-2 + r~3, (5a) 

4IxmU = r2-3 - r23, + (5b) 

4IxmV = r~3 - rl3, (5c) 

4Ixm W = ri-2 - r~2, (5d) 

4Ix U W  = r~3 + ri-3, (5e) 

4Ix V W  = r~3 + r23, (5f) 

4Ix W 2= F -  r~, - r]2 + r3+3, (5g) 
+ + 

4vU 2 = F + r~-i - r22 - r33, (5h) 

4 v m U  = r~-2 - r32, (5i) 

4 v U W  = rfl + r31, (5j) 
+ 

4 v U V  = r21 + r21 , (5k) 

4vm V = r31 + (5/) - -  r 3 1 ,  

4v V W  = r~2 + r 3 2 ,  (5m) 

4vV 2= F -  r~] + r~-2- r~3, (5n) 

where F is defined by (2) and r~/F and r~/F are the 
elements of the rotation matrices R and R-1, respec- 
tively. The constraints given in (5) were derived by 
Singh, Chandrasekhar & King (1990) by use of the 
fact that the necessary and sufficient condition for 
the three-dimensional CSLs to occur is that R and 
R-1, in lattice coordinates, are both rational. 

From the set of equations (5) and the a-hex 
theorem given in the paper by Grimmer & War- 
rington (1987), it can be deduced that a is a factor of 
4ix v. This is used to obtain constraints on the values 
of a, m, U, V and W. Thus, we obtain the values of 
these parameters for which coincidence rotations can 
exist and also the associated X values. These con- 
straints ensure that the matices XR and X R - l  are 
integral and indeed yield coincidence rotations. 

Equations (4) and (5) and the fact that a is a 
factor of all the expressions in (5) serve to derive a 
lower bound on X for constrained coincidence 
rotations for any given axis of rotation (Grimmer, 
1992a). It follows from (5b) and (5i) that al4rnU, 
from (5c) and (5/) that al4mV,  from (5e) and (5./) 
that al4UW,  and from (5f) and (5m) that a l4VW,  
where '1' means 'is a factor of'. For constrained 
coincidence, m ~ 0, U ~ 0 or m ~ 0, V ~ 0 or W ~ 0, 
U ~ 0 o r  W ~ 0 ,  V ~ 0 .  

In the first case, one has 

2 = F/a > (IX m 2  + ~'U2)/a > 2(ixm2vU2)l/2/a 

_> 2(IX v)l/2mU/4mU >_ (Ix v)1/2/2, (6) 
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where we have used the first result, i.e. al4mU. 
Similar results are obtained for the other cases. 

A stronger bound given by Grimmer (1992b) is: 

if /z is odd or a multiple of 4 then 27 >_ (~ v) ~/2, 

otherwise E_>(2/z~,) ~/2. (7) 

This bound makes it possible to determine all pos- 
sible values of/1, and ~, for a given upper limit on 27 
and for a given range of axial ratios c/a that may 
give rise to constrained coincidence. 

Equivalent quaternion descriptions for tetragonal 
system, disorientation and choice of a representative 

class 

Simple applications of the theory outlined above 
yield coincidence rotations, some of which may give 
physically identical structures although they derive 
from different rotations. Such rotations are termed 
'equivalent' and it is desirable to have a systematic 
means of selecting only one among any set of 
equivalent rotations. The tables produced for 
YBa2Cu307-8 by Singh, Chandrasekhar & King 
(1990) include some cases of equivalent rotations 
that were not correctly removed and we develop here 
a method to ensure that only a single representative 
of each set is selected. Grimmer (1980) defined the 
disorientation as the minimum angle among the 2N 2 
equivalent rotations in the positive sense around an 
axis in the standard stereographic triangle, where N 
is the number of symmetry rotations of the lattice. 

Two rotation matrices, R and R' are equivalent if 
R "= S R T  or R ' =  S R - ~ T ,  where S and T describe 
symmetry rotations for a particular crystal structure. 
It was shown by Grimmer (1974, 1980) that the 
number, n, of equivalent rotations is given by n = 
2N2/m, where m is a factor of 2N. Similarly, two 
quaternions Q and Q' are equivalent if Q ' =  QsQQ, 
or Q ' =  QsQ-IQt,  where Qs and Qt describe symme- 
try quaternions for a particular crystal structure. In 
the case of tetragonal crystals there are eight symme- 
try matrices and therefore 2 x 82 equivalent rotations 
and 4 x 82 quaternions since there are two quater- 
nions ___ Q associated with every rotation (Du Val, 
1964; Grimmer, 1974). The equivalent quaternions 
were obtained by Grimmer (1980) for arbitrary 
crystal structures. He listed the equivalent quater- 
nions in orthogonal coordinates. Gertsman (1990) in 
his paper on vector-quaternion description of mis- 
orientation, however, gave the values in tetragonal 
coordinates. We list the equivalent quaternions in 
tetragonal coordinates obtained from those given by 
Grimmer (1980). To avoid any confusion in the 
comparison of our results with Gertsman's, it should 
be noted that the terms K, L, M, N for quaternions 
in the paper by Gertsman are U, 1I, W, m, respec- 
tively, in ours. 

Table 1. Axial ratios o f  19 alloys based on Llo 
structure 

The first column gives the value of (c/a) for the pseudo-face- 
centered tetragonal unit cells of the alloys. The values of (c/a) 2, 
2~"2c/a and (2~/2c/a) 2 have been calculated from the values of c/a 
given in the first column. 

Alloy c/a (c/a) 2 2 ~'2c/a (2~'2c/a) 2 

dJ-CuTi 0.643 0.413 0.909 0.827 
8-PdZn 0.186 0.666 !. 154 1.332 
8-CdPd 0.845 0.714 1.195 1.428 

PtZn 0.860 0.740 1.2 i 6 1.479 
HgPd 0.862 0.743 1.219 1.486 
e-BiLi 0.894 0.799 1.264 1.598 
8-HgPt 0.910 0.828 1.287 1.656 
8-CdPt 0.914 0.835 1.293 1.671 
CuAu 0.926 0.857 1.310 1.715 
NiPt 0.939 0.882 1.328 ! .763 

/3"-InMg 0.960 0.922 1.358 1.843 
FePd 0.966 0.933 1.366 1.866 
FePt 0.968 0.937 1.369 1.874 
CoPt 0.973 0.947 1.376 1.893 
BiNa 0.980 0.960 1.386 1.921 
AgTi 0.993 0.986 1.040 ! .972 
TiAI 1.020 1.040 1.442 2.081 
HgZr 1.320 1.742 1.867 3.485 
HgTi 1.343 1.804 1.899 3.607 

The equivalent quarternions are obtained by 
multiplication of the symmetry quaternions with the 
coincidence quaternions [A, B, C, D]. The symmetry 
quaternions for tetragonal systems in crystal co- 
ordinates can be obtained by use of (Singh, Chan- 
drasekhar & King, 1990) 

[A, B, C, D] = _ [cos(O/2), n~psin(8/2), 

n2psin(0/2), n3psin(0/2)], (8) 

where 0-< O _< rr describes a right-handed rotation 
about an axis with tetragonal-crystal components n~, 
//2, //3 satisfying n21 + n 2 + p2n~ = 1. Therefore, the 
symmetry quaternions for tetragonal crystals in 
tetragonal-crystal coordinates are 

[1,0,0,0], 2-'/211,0,0,1], [0,0,0,1], 2-'/2[-1,0,0,1], 
[0,p,0,0], [0,0,p,0], 2-'/2[0,p,p,0], 2- ' /2[0 ,p , -  p,0]. 

The multiplication law for unit quaternions is 

[~, /3 , r ,~] . [~ ' , /3 ' , r ' , ,~ ' ]  = [~ .~ '  - ~ . , ~ ' -  (/3./3' + r . r ' ) ,  

a./3' + / 3 . a '  + ~,.8' - 8.3/, 

e . 9 / - / 3 . 8 '  + ~,.a' + 8./3', 

~.,~' + ,~.~' + (/3. ~ / -  ~,./3')]. 

Singh, Chandrasekhar & King (1990) give the rela- 
tion between the quaternions in cubic coordinates [a, 
/3, y, 8] and the quaternions in tetragonal-crystal 
coordinates [A, B, C, D], which can be written as 

[o~, /3, % ,~] = -,-[,4, B/,o, C /p ,  D]. (9) 
The multiplication law for tetragonal crystals in 
crystal coordinates can be obtained if the tetragonal 
quadruples [A, B, C, D] and [A', B', C', D'] are 
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replaced by quarternions in accordance with (9), with 
use made of the usual multiplication law given above 
and a change back to tetragonal quadruples. This 
results in 

[A, B, C, D].[A', B', C', D'] = 

[A.A" - D.D" - p-2(B.B" + C.C) ,  

A.B" + B.A' + C.D' - D.C', 

A.C" - B.D' + C.A" + D.B', 

A.D" + D.A" + p - 2 ( B . C ' -  C.B')], (lO) 

where p = c/a. 
Therefore, the equivalent quaternions for the 

tetragonal system, in crystal coordinates, can be 
given by the permutations and arbitrary sign changes 
of the four components [(1), (14)(23), (23) and (14)] 
in the quarternions 

[A, B, C, D], 

[B/p, Ap, Dp, C/p], 

2-~/2[A + D, B +  C, B -  C, A - D], 

2-l/2[(B + C)/p, (A + D)p, (A - D)p, ( B -  C)/p], 
(11) 

where A 2 + D 2 + p-2(B2 + C -e) = 1. These quater- 
nions can be written in terms of m, U, V, W, Ix and ~, 
by use of the definitions 

r = p-2, (12) 

s = m 2 + W 2 + ~'(U 2 + V2), (13) 

A = m s -  l/z, B = Us- 1/2, C = Vs-  l/Z, D = Ws-  ~/2 
(14) 

This results in 
S- 1/2[m, U, V, W], (15a) 

s-l/z(u/ix)l/2(1/v)[vU, Ixm, IXW, vV], (15b) 

2-~/2s-1/Z[m + W, U +  V, U -  V, m -  W], (15c) 

s-m(u/ix) ' /2(1/u)[u(U + V), I x ( m -  W), 

Ix(m + I40, v ( U -  lO]. (15d) 

The conditions for disorientations were given by 
Grimmer (1980) and can now be written in tetrag- 
onal coordinates as 

U>  V>0,  W > 0 ,  (16a) 

m >_ (v/Ix) lnu,  (16b) 

m >- 2-1/2(v/Ix)~/z(u + V), (16c) 

m -> (2 ~/z + 1)W, (16d) 

if m = (v/Ix)l/au then W<_ (v/Ix)I/2V, (16e) 

if 21/Zm = (II/Ix)I/2(U + V) 

then 2roW<_ (v / Ix )1 /z (u-  V), (16f) 

if m = ( 2 ~ / 2 + l ) W  then U_>(2~n+l)V.(16g) 

These conditions give a unique representative in each 
class of equivalent rotations. The representative is 
the rotation with minimum angle and axis in a 
standard stereographic triangle defined by U-> V_> 
0, W_>0. 

Coincidence systems for Llo alloys 

The unit cell of L 1 o-type alloys is face-centred tetra- 
gonal (f.c.t.) with axial ratio c/a varying from 0.643 
to 1.343. Table 1 lists the values of c/a for 19 alloys 
with the L10 structure. To determine all possible 
coincidence systems for the Llo alloys, there are two 
possible choices for primitive tetragonal-crystal lat- 
tices, one with an axial ratio c/a corresponding to 
pseudo-face-centered tetragonal structure (pseudo- 
f.c.t.) and the other with an axial ratio of 21/2(c/a) 
corresponding to a pseudo-body-centered tetragonal 
(pseudo-b.c.t.) unit cell. These descriptions are 
shown in Fig. 1 for the Llo CuAu cell. The structures 
in Figs. l(a) and l(c) are termed pseudo-f.c.t, and 
pseudo-b.c.t, since the four face-centred atoms in 
Fig. l(a) and the body-centred atom in Fig. l(c) are 
of different kinds (Au atoms in these figures). Since 
Cu and Au sites are not equivalent, the cell is always 
correctly described as primitive tetragonal. The 
pseudo-f.c.t, description is used frequently in the 

I a I 

(a) 

I W  I F  

0 0 0 0 0 
0 0 

(b) 

[ O cu 
O AU 

i ~ a / , / ' ~  ' ' ~  

(c) 
Fig. 1. Unit cell of CuAu(1), an Llo alloy. (a) Pseudo-face- 

centered tetragonal cell. (b) Relation between pseudo-face- and 
pseudo-body-centered unit cells. (c) Pseudo-body-centered 
tetragonal cell. 
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metallurgical literature as a result of a tradition of 
regarding the L10 structure as 'ordered f.c.c.'. In the 
present study we have determined the coincidence 
systems for the primitive tetragonal cell based on the 
pseudo-b.c.t, description, making use of the methods 
given by Singh, Chandrasekhar & King (1990) and 
(7) and (16). The CSL and DSC vectors were 
determined by use of the method of Grimmer & 
Warrington (1987) and the step vectors were 
determined by the method given by Chen & King 
(1987). 

Gertsman (1990) determined all possible coinci- 
dence systems up to ,S---49 for L10 alloys based on 
the body-centered description of the unit cell. How- 
ever, he used only the axial ratio of 21/2 . His justi- 
fication for the choice of axial ratio of 21/2 is based 
on the data of (2~/2c/a) 2 of seven alloys varying from 
1.84 to 2.04. It is evident from Table 1 that the axial 
ratio (2mc/a) 2 for the b.c.t, structure varies from 
0.827 to 3.607. Therefore, the restrictions imposed by 
Gertsman do not provide sufficient data for all Llo 
alloys. Furthermore, Shin & King (1991) have 
demonstrated that there can be a compensation 
effect between the misorientation accommodation 
and the axial-ratio accommodation that can lead to 
large dislocation spacings in equilibrated grain 
boundaries even at extreme deviations from the ideal 
coincidence misorientations and axial ratios. In the 
light of this result and the broader range of axial 
ratios shown in Table 1, it is important to determine 
coincidence orientations for large ranges of axial 
ratio. We present our results for all possible coinci- 
dence systems for primitive tetragonal lattices based 
on the body-centered cell with 0.800<21/2c/a < _ 
1.900. We have used (7) to get all possible values of 
/z and v for an upper limit of ~: and for the above 
range of axial ratios. 

The rotations about [001] are exact rotations and 
are the same as rotations about (100) axes in 
cubic crystals. Table 2 gives a comprehensive list of 
~7 values, rotation axes, rotation angles, CSLs, DSCs 
and step vectors for rotations other than the [001] 
axis with £ _< 7 and 0.800 ___ 21/2c/a _ 1.900 for primi- 
tive tetragonal lattices based on a pseudo-b.c.t, unit 
cell. The values are also included for c/a = 1.000 
since this would give constrained coincidence systems 
in the case of  Llo alloys. All the vectors in Table 2 
are listed columnwise, with the three columns of step 
vectors corresponding respectively to the columns of 
the DSC vectors. All of the coincidence systems are 
characterized by the unique disorientation descrip- 
tion given in (16a). Note the large number of high- 
coincidence systems: there are 45 distinct CCSLs 
with £ _< 7. 

Gertsman (1990), discussing vector-quaternion 
descriptions of misorientations, gave a set of rules 
for the calculation of £ for cubic, tetragonal and 

hexagonal packed crystal lattices. We generated a 
table of coincidences for ,Z --- 50 and the axial ratios 
ranging from 0.800 to 1.900 using his rules to com- 
pare our results with the tables produced by us using 
his algorithm. We found there are certain discrep- 
ancies in the results. It is interesting to note that all 
of the values of ,Z for the axial ratio of 21/2 given in 
his paper match with ours and that these were the 
only data that he presented. Given below is an 
example to illustrate the discrepancies in our results 
and those obtained by use of Gertsman's method for 
the calculation of £. 

Since the quaternions (K, L, M, N) in Gertsman 
(1990) are equivalent to (U, V, IV, m) in the present 
study, the rules for the calculation of £ given by 
Gertsman rewritten in terms of quadruples (m, U, V, 
W) are: if ~ = ([v(U 2 + V 2) + # ( m  2 + W2)] and ( = 
1/ce/3y, then a = 2 when U2+ V 2 and m2+ W 2 are 
even integers, otherwise a = 1 and 

/3 = g.c.d.[#, 2U, 2V, (U 2 + V2)/ce], 

y = g.c.d.[v, 2W, 2m, (m2+ W2)/a]. 

Example. m = 3 ,  U = 5 ,  V = 0 ,  W = 0 , / z = 2 5 ,  v =  
9. This gives ~ =  15. If we apply Gertsman's rules 
given below, we get 

= ([9(25) + 25(9)] = 450(, 

U 2 + V  2 = 2 5 ( o d d )  andre  z+  W 2 = 9 ( o d d ) ,  

hence a = 1, 

/3 = g.c.d.(25,10,0,25/1) = 5, 

Hence, 

and therefore 

, /=  g.c.d.(9,0,6,9/1) = 3. 

( =  1 /a /3y= 1/15 

= 450/15 = 30. 

Gertsman's algorithm for the calculation of ~ for 
tetragonal crystals gives the value of ,Z to be 30, 
while our calculations yield 2? = 15. Fig. 2 gives the 
geometrical construction of this coincidence system 

0 0 

OoO OoO 

o% o°o 
O O 

~Lattice I 

Lattice 2 

Fig. 2. Schematic diagram of the coincidence site lattice for the 
~? = 15/90°/[100] system, with the axial ratio of 1.667. 
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Table  2. CSL, DSC and step vectors with ~ <- 7, 0.800 < 21/2c/a -< 1.900 for the primitive tetragonal lattices 
based on pseudo-b.c.t, description of  the unit cell 

T h e  ' S y s t e m '  c o l u m n  gives  the  v a l u e  o f  2 ,  t he  r o t a t i o n  axis  a n d  the  r o t a t i o n  a n g l e  (°). T h e  e l e m e n t s  o f  the  r o t a t i o n  m a t r i x  a n d  D S C  
la t t i ce  have  been  m u l t i p l i e d  b y  ~:. A l l  v e c t o r s  a r e  to  be  r e a d  c o l u m n w i s e .  T h e  first  g iven  s tep  v e c t o r  c o r r e s p o n d s  to  t he  first  g iven  D S C  

v e c t o r  elc. 

Step  
2 t;2 c/a S y s t e m  2 x R C S L  ~ x D S C  v e c t o r  21/2 c/a S y s t e m  .~ x R 

0.816 ~ = 4  3 1 2 0 1 1 1 - 1  2 1 1 1 1.225 27=7 7 0 0 

0.816 

0.816 

0.816 

0.845 

0.866 

0.866 

0.866 

0.866 

0.894 

0.894 

1.000 

1.000 

1.000 

1.118 

1.118 

1.155 

1.155 

1.155 

1.155 

1.183 

1.225 

1.225 

[110] I 3 - 2  0 1 - 1  - 1  1 2 0 0 0 
60.000 - 3  3 2 - 2  0 ! - 1 - 3  2 0 0 0 
2?=5  5 0 0 1 0 0 5 0 0 0 0 0 1.225 
[100] 0 1 - 4  0 1 - 2  0 2 1 0 - 1  0 

78.463 0 6 1 0 1 3 0 - 3  1 0 1 1 
2?=7  7 0 0 1 0 0 7 0 0 0 0 0 1.265 
[100] 0 5 - 4  0 2 - 1  0 1 2 0 0 1 

44.415 0 6 5 0 1 3 0 - 3  1 0 2 i 
2?=7  4 3 4 - i  0 2 - 1 - 2  4 0 1 0 1.291 
[110] 3 4 - 4  0 1 - 2  I 2 3 0 - 1  0 

81.787 - 6  6 1 - 1 - 1 - 3  - 2  3 1 - 2 - 2 - 1  
2?=6  6 0 0 1 0 0 6 0 0 0 0 0 1.342 
[100] 0 1 - 5  0 1 - 2  0 2 1 0 - 1  0 

80.406 0 7 1 0 1 4 0 - 4  1 0 2 1 
~ = 4  4 0 0 1 0 0 4 0 0 0 0 0 1.414 
[100] 0 2 - 3  0 1 - 1  0 3 1 0 0 0 

60.000 0 4 2 0 2 2 0 - 2  2 0 0 2 
2?=5  3 2 3 - 1  0 2 - 1 - 1  3 1 0 0 1.414 
[110] 2 3 - 3  0 1 - 1  1 1 2 0 0 0 

78.463 - 4  4 1 - 1 - 1 - 2  - 2  3 1 - 1 - 1 - 1  
, ~ = 7  6 1 3 - 1  1 1 1 - 2  4 0 ! 0 1.414 
[110] I 6 - 3  0 ! - 2  - 1  2 3 - 1  0 0 

44.415 - 4  4 5 - 2  0 - 1  - 3 - 1  2 - 1 - 1 - 1  
2?=7  7 0 0 1 0 0 7 0 0 0 0 0 1.414 
[100] 0 1 - 6  0 1 3 0 3 1 0 - 1  0 

81.787 0 8 ! 0 1 4 0 - 4  1 0 2 1 
E = 6  6 0 0 1 0 0 6 0 0 0 0 0 1.414 
[100] 0 4 - 4  0 2 0 0 0 2 0 0 1 

48.190 0 5 4 0 1 3 0 - 3  1 0 1 1 
27=7 5 2 4 - 1  1 I 1 - 2  4 0 1 1 1.500 
[110] 2 5 - 4  0 1 - 1  - 1  2 3 0 0 0 

64.623 - 5  5 3 - 3  0 - 1  - 1 - 5  3 - 2 - 1 - 1  
~ = 3  2 - 1  2 I - 1  1 2 - 1  1 0 0 0 1.528 
[111] 2 2 - 1  0 1 1 - !  2 1 1 1 1 

60.000 - 1  2 2 - 1  0 1 - 1 - 1  1 0 0 0 
2?=5  5 0 0 1 0 0 5 0 0 0 0 0 1.581 
[100] 0 4 - 3  0 2 1 0 - 1  2 0 1 ! 

36.870 0 3 4 0 - 1  2 0 - 2 - 1  0 1 0 
2?=7  6 - 2  3 - 1 - 1  2 3 - 1  2 0 0 0 1.581 
[111] 3 6 - 2  - 1  2 0 - 2  3 1 0 0 0 

38.213 - 2  3 6 - I  0 - 1  - 1 - 2  4 - ! - 1 - 1  
2?=6  6 0 0 i 0 0 6 0 0 0 0 0 1.633 
[100] 0 4 - 5  0 2 - 1  0 1 2 0 0 1 

48.190 0 4 4 0 2 2 0 - 2  2 0 1 1 
2?=7  5 2 5 - I  1 2 - 1 - 2  4 1 0 0 1.633 
[110] 2 5 - 5  0 1 - 3  1 2 3 - 1 - 1 - 1  

64.623 - 4  4 3 - 1  0 - 2  - 2  3 1 - 1 - 1 - 1  
~ = 4  4 0 0 1 0 0 4 0 0 0 0 0 1.633 
(100) 0 2 - 4  0 2 2 0 2 2 0 2 1 

60.000 0 3 2 0 - 1  1 0 - 1  1 0 0 0 
2?=5  3 2 4 - 2  1 1 1 1 4 0 0 0 1.732 
[110] 2 3 - 4  1 1 - 1  - 1  4 1 0 0 0 

78.463 - 3  3 1 - 1  0 - 1  - 1 - 1  1 - 1  0 0 
, ~ = 7  6 1 4 - 2  1 0 2 - 1  2 - 1  0 0 1.732 
[110] 1 6 - 4  1 1 - 1  - 2  1 5 0 1 0 

44.415 - 3  3 5 - 1  0 - 2  - 1 - 3 - 1  - 1 - 1 - 1  
2?=7  7 0 0 1 0 0 7 0 0 0 0 0 1.732 
[100] 0 I - 8  0 4 - 1  0 1 4 0 0 1 

81.787 0 6 1 0 3 1 0 - 1  3 0 ! 2 
2?=6  6 0 0 I 0 0 6 0 0 0 0 0 1.732 
[100] 0 1 - 7  0 3 - 1  0 1 3 0 0 1 

80.406 0 5 1 0 3 1 0 - 1  3 0 1 1 
2 ? = 4  3 1 3 - 1  1 ! 2 2 - 1  1 0 0 1.732 
[110] 1 3 - 3  0 1 - 2  - 2  2 1 0 - 1 - 1  

60.000 - 2  2 2 - 1  0 - 1  0 0 2 - 1 - 1 - 1  
2?=5  5 0 0 1 0 0 5 0 0 0 0 0 
[100] 0 1 - 6  0 3 - 1  0 1 3 0 0 1 

78.463 0 4 1 0 2 1 0 - 1  2 0 1 1 

S t ep  
C S L  2 x D S C  v e c t o r  

1 0 0 7 0 0  0 0 0 
[100] 0 5 - 6  0 1 3 0 1 3 0 1 2 

44.415 0 4 5 0 - 2  1 0 - 2  1 0 - 1  0 
2?=7  4 3 6 - 2  1 1 1 2 5 0 0 0 
[110] 3 4 - 6  1 1 - 1  - 1  5 2 0 1 1 

81.787 - 4  4 1 - 2  0 - 1  - I - 2  2 - 1 - 1 - 1  
2?=7  7 0 0 1 0 0 7 0 0 0 0 0 
[100] 0 3 - 8  0 2 - 3  0 3 2 0 0 - 1  

64.623 0 5 3 0 1 2 0 - 2  1 0 1 1 
E.=4 4 0 0 1 0 0 4 0 0 0 0 0 
[100] 0 ! - 5  0 3 - 1  0 1 3 0 1 1 

75.522 0 3 1 0 1 1 0 - 1  ! 0 ! 1 
2?=7  7 0 0 1 0 0 7 0 0 0 0 0 
[100] 0 2 - 9  0 5 - 1  0 1 5 0 2 1 

73.398 0 5 2 0 2 1 0 - 1  2 0 1 1 
2?=2  1 1 2 0 1 1 1 - 1  1 1 1 0 
[110] 1 1 - 2  0 1 - 1  - 1  1 1 0 0 0 

90.000 - 1  1 0 - 1  0 0 - 1 - 1  1 0 0 0 
2?=3  3 0 0 1 0 0 3 0 0 0 0 0 
[100] 0 1 - 4  0 2 - 1  0 1 2 0 0 0 

70.529 0 2 i 0 1 1 0 - I  1 0 1 i 
, ~ = 5  4 1 4 - 1  1 2 - 1 - 2  3 1 1 1 
[110] 1 4 - 4  0 1 - 2  1 2 2 0 - 1 - 1  

53.130 - 2  2 3 - 1  0 - 1  - 2  1 1 0 - 1 - 1  
2?=6  5 - 3  2 1 1 2 - 1  2 4 1 1 1 
[201] 3 3 - 6  - !  1 0 - 3  0 0 0 0 0 

60.000 1 3 4 - 1 - 1  1 1 - 2  2 0 0 0 
2?=7  4 - 1  8 - 1  1 2 2 - 1  3 1 0 1 
[221] 5 4 - 4  0 2 - 1  - 1  4 2 0 0 1 

73.398 - 2  4 3 - 1  0 - 1  - I - 3  2 - 1 - 1  0 
~ = 6  6 0 0 1 0 0 6 0 0 0 0 0 
[100] 0 0 - 9  0 0 - 3  0 3 0 0 - 1  0 

90.000 0 4 0 0 2 0 0 0 2 0 0 1 
2?=5  5 0 0 ! 0 0 5 0 0 0 0 0 
[100] 0 2 - 7  0 4 - 1  0 1 4 0 1 1 

66.422 0 3 2 0 1 1 0 - 1  1 0 1 0 
2?=6  5 1 5 - 1  1 2 2 - 1  3 1 1 1 
[110] 1 5 - 5  0 1 - 3  - 2  1 3 - 1  0 - 1  

48.190 - 2  2 4 - 1  0 - 1  - 2 - 2  0 - 1  0 - 1  
2?=7  7 0 0 1 0 0 7 0 0 0 0 0 
[100] 0 3 - 1 0  0 5 - 1  0 1 5 0 1 2 

64.623 0 4 3 0 2 1 0 - 1  2 0 1 1 
2?=5  5 0 0 1 0 0 5 0 0 0 0 0 
[100] 0 1 - 8  0 2 - 3  0 3 2 0 0 0 

78.463 0 3 1 0 1 1 0 - 1  1 0 0 1 
, ~ = 7  7 0 0 1 0 0 7 0 0 0 0 0 
[100] 0 5 - 8  0 3 1 0 3 1 0 1 2 

44.415 0 3 5 0 - 1  2 0 - 1  2 0 1 0 
2?=7  4 3 8 - 1  1 2 6 - 1  1 1 0 1 
[110] 3 4 - 8  1 1 - 3  1 1 6 - 1  0 - 1  

81.787 - 3  3 1 - 1  0 - 1  - 1 - 1  1 - 1 - 1 - 1  
, ~ = 2  2 0 0 1 0 0 2 0 0 0 0 0 
[100] 0 1 - 3  0 1 - 1  0 1 1 0 0 0 

60.000 0 1 1 0 1 1 0 - 1  1 0 1 0 
2?=4  2 0 6 0 - 1  2 2 0 2 0 0 0 
[331] 3 2 - 3  - 1  1 0 - 1  2 I 0 0 0 

82.819 - 1  2 1 - 1 - 1  0 - 1 - 2  1 - 1 - 1 - 1  
2?=5  3 2 6 - 1  1 1 4 - 1  1 0 0 0 
[110] 2 3 - 6  1 1 - 2  1 1 4 0 0 0 

78.463 - 2  2 1 - 1  0 - 1  - 1 - 1  I - 1 - 1 - 1  
2?=7  6 1 6 - 1  1 3 - 1 - 3  4 i 1 1 
[110] 1 6 - 6  0 1 - 3  1 3 3 0 - 1 - 1  

44.415 - 2  2 5 - 1  0 - 1  - 2  I 1 0 - 1 - 1  
~ = 7  7 0 0 1 0 0 7 0 0 0 0 0 
[100] 0 1 - 1 2  0 2 - 3  0 3 2 0 - 1  0 

81.787 0 4 1 0 1 2 0 - 2  1 0 1 1 



272 C O I N C I D E N C E  O R I E N T A T I O N S  F O R  Llo A L L O Y S  

and it can be clearly seen that the value of  2 is 
indeed 15 and in agreement with our calculations. 
Approximate ly  20% of  the results obtained by use of  
Ger t sman ' s  a lgor i thm contain an error of  a factor of  
either 2 or 1 in the value of  2. This appears to be 
related to the determinat ion of  s c, the components  of  
which are given without  derivation in his paper. We 
are therefore unable  to identify the exact nature of  
the error. 

Concluding remarks 

We have generated tables of  coincidence orienta- 
tions, CSL, DSC and step vectors for the ordered 
tetragonal Llo alloys for the primitive tetragonal cell 
based on the pseudo-b.c.t, description with 27 _< 50 
and 0.800 _< 21/2c/a < 1.900. We have made  use of  the 
condit ions given in (7) and (16) to ensure the com- 
pleteness of  our results. We have also shown that the 
rules for the determinat ion of  27 for tetragonal crys- 
tals given in Ger tsman (1990) do not always give the 
correct value. The data  to be deposited comprise a 
comprehensive list of  2? values, axes, angles, CSLs, 
DSCs and step vectors for L10 alloys for 2 <_ 50 and 
0.800 _< 21/2c/a _< 1.900.* 

* Lists of 2 values, axes, angles, CSLs, DSCs and step vectors 
for Llo alloys for 27_< 50 with 0.800 _< 2~/2c/a <_ 1.900 have been 
deposited with the British Library Document Supply Centre as 
Supplementary Publication No. SUP 55719 (258 pp.). Copies may 
be obtained through The Technical Editor, International Union of 
Crystallography, 5 Abbey Square, Chester CHI 2HU, England. 

This work was supported by the Nat ional  Science 
Foundat ion ,  under  grant No. DMR-8901994.  We 
would like to thank Dr  Hans  Gr immer  for many  
extremely helpful suggestions. 

References 

BRUGGEMAN, G. A., BISHOP, G. H. & HAR'rT, W. H. (1972). The 
Nature and Behavior of Grain Boundaries, edited by H. Hu, 
p. 83. New York: Plenum. 

CrmN, F. R. & KING, A. H. (1987). Acta Cryst. B43, 416- 
422. 

CI-~N, F. R. & KING, A. H. (1988). Philos. Mag. A57, 431- 
455. 

CLARK, W. A. T., WAGONER, R. H., CHEN, Z. Y., LEE, T. C., 
ROBERTSON, I. M. & BIRNBAUM, H. K. (1992). Scr. Metall. 26, 
203-206. 

Du VgL, P. (1964). Homographies, Quaternions and Rotations, 
Oxford Mathematical Monographs. Oxford: Clarendon Press. 

FUKUTOMI, H., KAMIJO, T. & HORIUCHI, R. (1986). Trans. Jpn 
Inst. Met. Suppl. pp. 929-936. 

GERTSMAN, V. YU. (1990). Colloq. Phys. C-l, 145-150. 
GRIMMER, H. (1974). Acta Cryst. A30, 685-688. 
GRIMMER, H. (1980). Acta Cryst. A36, 382-389. 
GRIMMER, H. (1989). Acta Cryst. A45, 320-325. 
GRIMMER, H. (1992a). Private communication. 
GRIMMER, H. (1992b). Mater. Forum. In the press. 
GRIMMER, H. & WARRINGTON, D. H. (1987). Acta Cryst. A43, 

232-243. 
lONG, A. H. (1982). Acta Metall. 30, 419-427. 
StuN, K. & KING, A. H. (1991). Philos. Mag. A63, 1023- 

1033. 
SINGH, A., CHANDRASEKHAR, N. & KING, A. H. (1990). Acta 

Cryst. B46, 117-125. 
WATANABE, T. (1984). Res. Mech. 11, 47-84. 

Acta Cryst. (1993). B49, 272-277 

Crystalline-State Racemization of a Chiral Cyanoethyl Group Connected by a 
Hydrogen Bond 

BY YASUYUKI TAKENAKA, YUJI OHASHI,* TAKAYUKI TAMURA, AKIRA UCHIDA AND YOSHIO SASADA 

Department o f  Chemistry, Tokyo Institute o f  Technology, O-okayama, Meguro-ku, Tokyo 152, Japan 

YOSHIAKI OHGO 

Niigata College of  Pharmacy, Kamishinei-cho, Niigata 950-21, Japan 

AND SHOE BABA 

Niigata Academy of  Medical Technology, Kamishinei-cho, Niigata 950-21, Japan 

(Received l l May 1992; accepted 21 July 1992) 

Abstract 

The crystal of  [(R)-l-cyanoethyl]bis(dimethylgly- 
oximato)(pyrrolidine)cobalt(III)  (dimethylglyoxi- 

* To whom correspondence should be addressed. 

0108-7681/93/020272-06506.00 

mato = 2,3-butanedione dioximato) revealed a 
gradual  change of  cell parameters  keeping the single- 
crystal form when it was irradiated by X-rays. It 
contains one water molecule as solvent in the asym- 
metric unit. The reactive cyanoethyl  group is hydro- 
gen bonded to the water molecule. In spite of  the 
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